Modality-Dependent Cross-Modal Retrieval Based on Graph Regularization
نویسندگان
چکیده
منابع مشابه
Cross-modal domain adaptation for text-based regularization of image semantics in image retrieval systems
In query-by-semantic-example image retrieval, images are ranked by similarity of semantic descriptors. These descriptors are obtained by classifying each image with respect to a pre-defined vocabulary of semantic concepts. In this work, we consider the problem of improving the accuracy of semantic descriptors through cross-modal regularization, based on auxiliary text. A cross-modal regularizer...
متن کاملA Comprehensive Survey on Cross-modal Retrieval
In recent years, cross-modal retrieval has drawn much attention due to the rapid growth of multimodal data. It takes one type of data as the query to retrieve relevant data of another type. For example, a user can use a text to retrieve relevant pictures or videos. Since the query and its retrieved results can be of different modalities, how to measure the content similarity between different m...
متن کاملCross-Modal Manifold Learning for Cross-modal Retrieval
This paper presents a new scalable algorithm for cross-modal similarity preserving retrieval in a learnt manifold space. Unlike existing approaches that compromise between preserving global and local geometries, the proposed technique respects both simultaneously during manifold alignment. The global topologies are maintained by recovering underlying mapping functions in the joint manifold spac...
متن کاملMHTN: Modal-adversarial Hybrid Transfer Network for Cross-modal Retrieval
Cross-modal retrieval has drawn wide interest for retrieval across different modalities of data (such as text, image, video, audio and 3D model). However, existing methods based on deep neural network (DNN) often face the challenge of insufficient cross-modal training data, which limits the training effectiveness and easily leads to overfitting. Transfer learning is usually adopted for relievin...
متن کاملHeterogeneous Metric Learning with Joint Graph Regularization for Cross-Media Retrieval
As the major component of big data, unstructured heterogeneous multimedia content such as text, image, audio, video and 3D increasing rapidly on the Internet. User demand a new type of cross-media retrieval where user can search results across various media by submitting query of any media. Since the query and the retrieved results can be of different media, how to learn a heterogeneous metric ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mobile Information Systems
سال: 2020
ISSN: 1574-017X,1875-905X
DOI: 10.1155/2020/4164692