Modality-Dependent Cross-Modal Retrieval Based on Graph Regularization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-modal domain adaptation for text-based regularization of image semantics in image retrieval systems

In query-by-semantic-example image retrieval, images are ranked by similarity of semantic descriptors. These descriptors are obtained by classifying each image with respect to a pre-defined vocabulary of semantic concepts. In this work, we consider the problem of improving the accuracy of semantic descriptors through cross-modal regularization, based on auxiliary text. A cross-modal regularizer...

متن کامل

A Comprehensive Survey on Cross-modal Retrieval

In recent years, cross-modal retrieval has drawn much attention due to the rapid growth of multimodal data. It takes one type of data as the query to retrieve relevant data of another type. For example, a user can use a text to retrieve relevant pictures or videos. Since the query and its retrieved results can be of different modalities, how to measure the content similarity between different m...

متن کامل

Cross-Modal Manifold Learning for Cross-modal Retrieval

This paper presents a new scalable algorithm for cross-modal similarity preserving retrieval in a learnt manifold space. Unlike existing approaches that compromise between preserving global and local geometries, the proposed technique respects both simultaneously during manifold alignment. The global topologies are maintained by recovering underlying mapping functions in the joint manifold spac...

متن کامل

MHTN: Modal-adversarial Hybrid Transfer Network for Cross-modal Retrieval

Cross-modal retrieval has drawn wide interest for retrieval across different modalities of data (such as text, image, video, audio and 3D model). However, existing methods based on deep neural network (DNN) often face the challenge of insufficient cross-modal training data, which limits the training effectiveness and easily leads to overfitting. Transfer learning is usually adopted for relievin...

متن کامل

Heterogeneous Metric Learning with Joint Graph Regularization for Cross-Media Retrieval

As the major component of big data, unstructured heterogeneous multimedia content such as text, image, audio, video and 3D increasing rapidly on the Internet. User demand a new type of cross-media retrieval where user can search results across various media by submitting query of any media. Since the query and the retrieved results can be of different media, how to learn a heterogeneous metric ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mobile Information Systems

سال: 2020

ISSN: 1574-017X,1875-905X

DOI: 10.1155/2020/4164692